Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(6): 2033-2045, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36752615

RESUMO

Dynamic hydrogels are viscoelastic materials that can be designed to be self-healing, malleable, and injectable, making them particularly interesting for a variety of biomedical applications. To design dynamic hydrogels, dynamic covalent crosslinking reactions are attracting increasing attention. However, dynamic covalent hydrogels tend to swell, and often lack stability. Boronate ester-based hydrogels, which result from the dynamic covalent reaction between a phenylboronic acid (PBA) derivative and a diol, are based on stable precursors, and can therefore address these limitations. Yet, boronate ester formation hardly occurs at physiological pH. To produce dynamic covalent hydrogels at physiological pH, we performed a molecular screening of PBA derivatives in association with a variety of diols, using hyaluronic acid as a polymer of interest. The combination of Wulff-type PBA (wPBA) and glucamine stood out as a unique couple to obtain the desired hydrogels. We showed that optimized wPBA/glucamine hydrogels are minimally- to non-swelling, stable long term (over months), tunable in terms of mechanical properties, and cytocompatible. We further characterized their viscoelastic and self-healing properties, highlighting their potential for biomedical applications.


Assuntos
Ésteres , Hidrogéis , Hidrogéis/química , Polímeros/química , Ácidos Borônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...